CCSS International Workshop on Computational Social Science
開催報告
計算社会科学研究センターは、2022年11月30日(水)に、ハイブリッド開催にて"CCSS International Workshop on Computational Social Science"を開催しました。
当センターの柴本昌彦教授の司会で幕を開け、今回の国際シンポジウム開始に先立ち、主催である計算社会科学研究センターの上東貴志センター長が開会のあいさつを行いました。 挨拶の中で、シンポジウム報告者についての紹介がなされ、各報告者がどのように当センターの研究に関わっているかについて説明がありました。
上東貴志センター長
報告は、当センターの研究の一端を担う6名の教員により行われました。第一報告は、当センターのリサーチフェロー・招へい外国人研究者で、2022年2月に開催した"CCSS School on Computational Social Science"でも報告を行った、Corrado Di Guilmi氏(豪・シドニー工科大学)による報告からスタートしました。その後、当センターのIvan Romic特命助教、正田ヴェラ・パオラ・レイエス助教、経済経営研究所のカシフ・アハマド助手、当センターの陳訓泉特命助教、シャディ・サラマ助手が報告を行いました。
初めてのハイブリッド開催でしたが、研究機関所属の研究者だけでなく、学生や民間企業からの聴講参加がありました。会場では、活発に質疑応答・意見交換が行われ、盛況のうちに終了しました。
Corrado Di Guilmi 氏(豪・シドニー工科大学)
Romic Ivan特命助教(計算社会科学研究センター)
正田ヴェラ・パオラ・レイエス助教(計算社会科学研究センター)
Kashif Ahmed助手(神戸大学経済経営研究所)
陳 訓泉 特命助教(計算社会科学研究センター)
Salama Shady助手(計算社会科学研究センター)
Program
CCSS International Workshop on Computational Social Science
RIEBセミナー/科研基盤研究(S)「包括的な金融・財政政策のリスクマネジメント:金融危機から国際関係・災害リスクまで」共催
Hosted by Center for Computational Social Science of Kobe University, Jointly Supported by RIEB Seminar / Grant-in-Aid for Scientific Research (S) #20H05633
日時 Date |
2022年11月30日(水)13:00 ~ 17:10 (Wednesday, November 30, 2022, 1:00pm - 5:10pm) |
---|---|
会場 Venue |
ハイブリッド(対面開催/ZOOMを使ったオンライン開催) Hybrid (Face-to-Face / Online Seminar by Zoom) |
対象 Inteded Audience |
教員、院生、および同等の知識をお持ちの方 Faculty, Graduate Students, and People with Equivalent Knowledge |
使用言語 Language |
英語 English |
参加登録 Registration |
※事前登録制です。下記より参加登録をお願い致します。追って、詳細をご連絡いたします。 Please complete the registration before Nov 27. The seminar details will be sent to the registered emails. 参加登録 (締切:11/27) |
司会:柴本 昌彦(神戸大学計算社会科学研究センター)
報告時間:30分 ディスカッション:5分 計35分/1報告者あたり
13:00~13:10 開会挨拶 / Opening Remarks
- 上東 貴志(神戸大学計算社会科学研究センター長)
13:15~13:50
- 論題
Topic - Does the Supply Network Shape the Firm Size Distribution? The Japanese Case
- 報告者
Presenter - Corrado DI GUILMI(University of Technology Sydney)
- 概要
Abstract - The paper presents an investigation on how the upward transmission of demand shocks in the Japanese supply network influences the growth rates of firms and, consequently, shapes their size distribution. Through an empirical analysis, analytical decomposition of the growth rates' volatility, and numerical simulations, we obtain several original results. We find that the Japanese supply network has a bow-tie structure in which firms located in the upstream layers display a larger volatility in their growth rates. As a result, the Gibrat's law breaks down for upstream firms, whereas downstream firms are more likely to be located in the power law tail of the size distribution. This pattern is determined by the amplification of demand shocks hitting downstream firms, and the magnitude of this amplification depends on the network structure and on the relative market power of downstream firms. Finally, we observe that in an almost perfectly hierarchical network, the power-law tail in firm size distribution disappears. The paper shows that aggregate demand shocks can affect the economy directly through the reduction in output for downstream firms and indirectly by shaping the firm size distribution.
13:50~14:25
- 論題
Topic - Freedom of Choice in Economic Games
- 報告者
Presenter - Ivan ROMIC(神戸大学計算社会科学研究センター)
- 概要
Abstract - Prisoner's dilemma, ultimatum game, and trust game are dyadic economics games used to study cooperation, fairness, and trust. Here, we present the evolution of these games from one-shot games between two players to repeated multiplayer games on various types of networks. We especially focus on the interactions between players and show how allowing players to freely choose with whom to interact increases cooperation, fairness, and trust. Finally, we present the latest theoretical and experimental advancement in games, and demonstrate their application in studies of pandemics, social polarization, and other key problems faced by modern societies.
14:25~14:35 休憩 Short Break
14:35~15:10
- 論題
Topic - Railway Passenger Traffic Volume and Google Maps Amenities: Investigating the Effects and Relationships Using Machine Learning
- 報告者
Presenter - Vera Paola Reyes SHODA(神戸大学計算社会科学研究センター)
- 概要
Abstract - Neighborhood amenities significantly impact people's traffic and attract the population to the area. This research aims to investigate the relationship between neighborhood amenities and the traffic volume of the 123 railway stations in Kobe City using data from Google Maps. Important amenity factors are identified using machine learning, such as the Extreme Gradient Boosting (XGB) algorithm. Results are expected to help public and private organizations develop and sustain urban amenities' diversity and availability.
15:10~15:45
- 論題
Topic - Positive Fuel Price Elasticities of Expressway Traffic Flows: Evidence from Japan
- 報告者
Presenter - Kashif AHMED(神戸大学経済経営研究所)
- 概要
Abstract - Literature suggests that higher fuel prices may encourage drivers to switch from local roads to expressways—implying a positive relationship between fuel prices and expressway traffic flows. This phenomenon is observable if the expressway significantly reduces travel distance or duration. The Hanshin Expressway, located in central Japan, provides an appropriate context for this study. We analyzed 16.57 million hourly traffic flows and found that fuel prices positively affected the traffic flows. We further found some significant differences in the fuel price elasticity of traffic flows during peak/off-peak hours across weekdays/weekends and its medium-run effect for five types of vehicles.
15:45~15:55 休憩 Short Break
15:55~16:30
- 論題
Topic - Voice Conversion Based on Deep Learning Models and Its Application to Practical Tasks
- 報告者
Presenter - 陳 訓泉(神戸大学計算社会科学研究センター)
- 概要
Abstract - The voice is one of the most natural communication tools for human beings and it provides not only linguistic information but also paralinguistic information, which include speaker information and emotional information. Voice conversion (VC) is a technique for converting paralinguistic information, while preserving the linguistic information in the utterance. Earlier studies of VC are focused on modeling the mapping between source and target features with statistical methods. In recent years, deep learning has markedly improved the performance of VC systems through learning hierarchies of features optimized for the task at hand. In this presentation, I would like to present my research on VC based on deep learning models and its application to practical tasks (speaker conversion, emotion conversion, and assistive technology for articulation disorders).
16:30~17:05
- 論題
Topic - Applications of Text Mining and Agent-based Simulation Modeling of COVID-19 Pandemic
- 報告者
Presenter - Shady SALAMA(神戸大学計算社会科学研究センター)
- 概要
Abstract - In March 2020, the World Health Organization declared COVID-19 a pandemic that has since claimed the lives of millions of people worldwide, with serious economic and social consequences. Since then, many researchers from different fields have collaborated to address issues related to detection and transmission, medications, and non-pharmaceutical interventions to control the spread of the virus. The main focus of this presentation is to provide an overview of text mining techniques used to study data related to COVID-19. The covered methods include word frequency, document classification, sentiment analysis, topic modeling, and text summarization. Furthermore, this presentation briefly discusses Agent-Based Social Simulation (ABSS), which simulates the virus dynamics using a society of artificial agents (people), businesses, and government. ABSS is a very useful tool for policy-makers to make informed decisions (restrictions or policies) in a fast and cost-efficient manner.
17:05~17:10 閉会挨拶 / Closing Remarks
- 柴本 昌彦(神戸大学計算社会科学研究センター)